
J .  FZuid Me&. (1972), vol. 52, part 1, pp.  33-42 

Printed in Great Britain 
33 

Second-order Cowley-Imai analogy in 
magnetogasdynamics 

By LEE A. BERTRAM 
Department of Engineering Mechanics, Iowa State University 

AND Y .  M. LYNN 
Division of Mathematics, University of Maryland, Baltimore County 

(Received 13 July 1971) 

The extended Cowley-Imai analogy is derived and employed to obtain explicit 
equations which allow transcription of gasdynamic perturbation solutions into 
magnetogasdynamic solutions. The transcription is written down to second 
order for axisymmetric super-Alfvbnic flows of a perfect gas at arbitrary Mach 
numbers. Speed and field perturbations are shown to vanish in the Alfvbnic 
limit for such solutions, although this is not a property of the exact solution. 
Van Dyke's supersonic-cone-flow solution is then transcribed and compared 
with the exact numerical solution over the range 1 < A ,  < 20, 1 < M, < 20 
for a cone of 5" semi-apex angle, showing excellent agreement which improves 
with increasing field strength. The large-cone-angle behaviour of the solution 
is also quite good for the upstream state A ,  = M, = 2.0. 

1. Introduction 
The aligned-field dissipationless flow of a perfect gas over a non-conducting 

slender body is of interest in magnetogasdynamics because of the insight into 
magnetogasdynamic phenomenology which may be gained by comparison with 
the corresponding gasdynamic solution. Unlike that in gasdynamics, the funda- 
mental boundary-value problem here is not two-dimensional but is axisym- 
metric, since two-dimensional geometry would require that the current and 
vorticity loops present in the flow be open. 

This paper employs the analogy of Cowley (1960) and Imai (1960) to 
transcribe solutions to this boundary-value problem from gasdynamics into 
solutions for magnetogasdynamics. I n  $ 2  the analogy is extended in the manner 
of Grad (1960) and Peyret (1962) to include shocks and thermodynamic equa- 
tions, and the range of its application to flows which are not homentropic, 
homenergic, or uniformly magnetized is discussed. The explicit transcription is 
worked out for the first two orders of axisymmetric potential flows with shock 
waves in § 3; general properties are also examined. 

Finally, the Van Dyke (1952) cone-flow solution is transcribed in 8 4. This 
solution is compared with the authors' (Bertram & Lynn 1972) numerical solu- 
tion of the exact equations of supersonic super-Alfv6nic cone flow. This is also 
compared with Bausset's (1963) first-order conical-flow perturbation solution, 
which is obtained by a similar transcription. 
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2. The extended Cowley-Imai analogy 
The Lundquist equations for the magnetogasdynamic flow of a compressible 

dissipationless gas with aligned magnetic induction B and velocity q are as 
follows: 

v * (pq) = 0, (2.1) 

pq .Vq+Vp = - B  x (V x B)/p, (2.2) 

v.  "(h+ ik12)1 = 0, (2.3) 

B = apq, v . B = 0, (2.4),  (2.5) 

with gas pressure p, density p, temperature T ,  specific entropy s, specific 
enthalpy h and specific internal energy e related by 

T d s  = de+pd(l/p), (2.8) 

where p is the constant magnetic permeability and a is a scalar 'alignment 
constant', so-called because (2.1)) (2.4) and (2.5) imply 

q . v a  = 0) (2.9) 

i.e. a = a($) is a constant on a streamline given by @ = constant. Also, (2.3) 
is equivalent to the familiar Bernoulli equation 

h+ &q2 = ho($) (2.10) 

or, when combined with (2.7) and (2.8), 

s = s($). (2.11) 

Cowley (1960) and Imai (19GO)) as well as Iur'ev (1960) and Hida (1961) (in 
different form), noted that, for homenergic (ho($) = constant), homentropic 
(s($) = constant), uniformly magnetized flow (a($) = constant) the substitu- 
tions 

q* = (1  - 1/A2) q, (2.12) 

P* = p/( l -  1/A2), (2.13) 

p" = p i -  B2/2p,  (2.14) 

where the Alfv6n number A is defined from the Alfv6n speed b by 

A2 = q2/b2 = q2/(B2/pp) = p/a2p (2.15) 

after substitution of (2.4), reduce (2.1) and (2.2) to the corresponding gas- 
dynamic forms. Putting the Cowley-Imai variables from (2.12)-(2.14) into 
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(2.1)-(2.8), with varying a, h, and s, after some rearrangement results in 

V . ( p * q * )  = 0, (2.16) 

(2.17) 

q* x ( V x q*) = ( 1 - 1 / A  2, [Vh, - TVS - ( b2Va) /a ] ,  (2.18) 

where a*2 = q*2(A2+M2- l)/A2M2 = 8p*/ap*, (2.19) 

the partial derivative being taken with a, h, and s held constant. Also, since 
p*q* = p q  the stream functions are identical: $* = $. 

We depart here from earlier derivations and introduce the thermodynamic 
variables 

h* = e* +p*/p*,  (2.20) 

T*ds* = de* +p*d(l/p*), (2.21) 

where h*, T*, etc. are defined only by (2.20) and (2.21), by requiring that (2.18) 
should take the form of Crocco's relation 

dh$-T*ds* = ( 1 -  1/A2) (dhO-Tds-b2da/a). (2.22) 

From (2.20)-(2.22) and (2.1)-(2.11) we have 

de*-dht = d[(l-  1/A2) (e-h,)] (2.23) 

or, removing de* from (2.23) by using (2.12), (2.13), (2.15) and (2.20), 

ah; = d( +q*2  + h*). (2.24) 

At this point, all the flow and thermodynamic relations have been transcribed 
without specification of the fictitious thermodynamic quantities e*, h*, etc. in 
terms of corresponding actual flow variables, except that (2.22) requires (2.23) 
to hold. 

Further restrictions must be placed on the fictitious thermodynamic variables 
if shock relations corresponding to (2.1)-(2.5) are to be written in terms of the 
Cowley-Imai variables : 

[p*&-J = 0, [p*&+p*] = 0, (2.25), (2.26) 

[SF] = 0, [&~*~+h*] = 0, [a] = 0, (2.27), (2.28), (2.29) 

where the 'jump ' is [XI = Xdownstream - Xupstream. While the other equations 
follow identically from previous definitions of the fictitious variables, (2.28) can 
be put into the form shown only by use of (2.23) and (2.24): 

h*+&*2 = h* , - - e*+(1-1/A2)(hO-e) ,  (2.30) 

within an additive constant. Thus [h:] = [e*] - [( 1 - 1/A2) e + h,/A2] since 
[h,] = 0,  and we must have 

e* = (1 - 1/A2) e + h,/A2 (2.31) 

and (2.32) 
3-2 
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That is, the transcription of shock relation (2.28) forces the choice of the 
Cowley-Imai variables e*, h;, and, through them, of h*: 

h" = h$ - Qq"2 = h 0 - (1 - 1/A2)2 (ho - h). (2.33) 

Finally, s* and T* remain undefined except that once s*($) is specified T* must 
satisfy (2.22): 

T" = {( 1 - l/A2) ( T d s / d $  + (bz/a) da/d$) + (dho/d$)/A2) (d+/ds*). 
(2.34) 

The arbitrariness in the choice of s*($) reflects the extra degree of freedom 
represented by CL in the magnetogasdynamic flow. Note that neither of the 
obvious definitions, s* = (1- 1/A2)5 and T* = (1  - l /A2) T, will satisfy (2.34), 
because A 2  is not a function of $ alone. 

These same variables were written down by Peyret (1962) for the two- 
dimensional, uniformly magnetized, homenergic case, the latter two restrictions 
resulting from his arbitrary choice of s* = s. Grad (1960) obtained the same 
transformation for the general case but selected hg and h* arbitrarily, without 
examination of the shock relations; hg and e* may be chosen in infinitely many 
ways and still satisfy the thermodynamic relations on the streamline, as shown 
by equation (2.30). 

The Cowley-Imai analogy is complete when we add to the equations of state, 
(2.33) and (2.34), the equation forp": 

13" = p(p, 8 )  + B2/2p = p + p(h0 - h)/A2, (2.35) 

where p and A2 are given by 

(2.36) 

The full analogy is now defined by equations (2.16)-(2.22) and shock relations 
(2.25)-(2.28), along with the equations of state, (2.33)-(2.35). Because the latter 
change form under the transformation defined by (2.12)-(2.15) and (2.31)-(2.32), 
the analogous gas is 'fictitious'. 

Interest here focuses on the use of the analogy to transcribe existing gas- 
dynamic solutions. For this use, Alfvdnic flows ( A  = 1) must be excluded 
because p* is infinite in this case; sub-Alfv6nic flows must be excluded even if 
the transformation is redefined, with ( 1/A2 - 1) replacing (1 - 1/A2) in order to 
avoid negative p*, since this leads to a change in sign of the first term of (2.26) 
and (2.27). Also, sub-Alfv6nic hyperbolic flows require upstream-facing shocks, 
so that the region of influence of the body is unlike that of any existing gas- 
dynamic solution, a point noted by Grad (1960) but overlooked by Bausset 
(1963). Finally, studies of the exact equations for flow over a cone show that no 
hyperbolic sub-Alfvdnic conical solution is possible because of singularities 
associated with the backward-facing characteristic from the nose of the body 
(Bertram RS Lynn 1972). Thus the transcription is applied only to super-Alfvdnic 
flows. 

I p = ( l - l /AZ)p* =p*(l+c?p*/p)-l, 

A2 = 1 +p/."*. 
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No limitation on Mach number has appeared in the derivation of the analogy, 
so it may be applied to subsonic or supersonic flows. Because of the unphysical 
nature of the equations of state, (2.33)-(2.35), only perturbation solutions will 
be transcribed. 

3. Potential-flow transcription equations 
To the first two orders, the solution to the perturbation equations for a 

slender body in a uniformly magnetized, homenergic, homentropic basic flow 
will also be homentropic, i.e. a potential flow, despite the presence of curved 
shock waves in the exact solution. For a potential flow the exact equations of 
motion may be written in terms of a perturbation potential by rearrangement 
of Imai's (1960) result by defining 

9" = P:v(x+9*), (3.1) 

where x is the axis of the unyawed slender body and the subscript co refers to the 
undisturbed uniform flow. In  Cartesian co-ordinates, with Vh, = Vs = Vcc. = 0, 
(2.16)-(2.18) become, upon substitution of (3.1) (Imai 1960; Bertram 1969)) 

(3.2) 

which is still exact and identical to the corresponding gasdynamic form 
(Van Dyke 1952). Expanding the pseudo-potential 

results in, for the first two orders, 

The triple products are retained on the right-hand side of (3.5) in anticipation 
of the axisymmetric 'gauge functions'. Equation (3.5) has been put into 
Van Dyke's (1952) form, with A z 2  = M z 2  - 1. The coefficients are 

M22 = A2, M2,/(A2, + M: - 1) (3.6) 

and (3.7) 
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and (3.7) can be written in terms of an analogous polytropic index since the 
gasdynamic N = $(y + 1) N2,/h2, : 

1- 1. 
(-42, - 1) [ ( y +  1) (A: - 1) + 3(M% - l)] 

A",A: +M: - 1) 
y" = ( 

Note that both y* and MZ reduce to their gasdynamic values in the vanishing 
field limit A,+m, while they become - 1 and 1 respectively for A,+ 1. 
Thus, the approach to  Alfvknic transition for the real magnetogasdynamic flow 
corresponds to the approach of a Chaplygin-KBrmBn-Tsien gas (Sears 1954) 
t o  sonic transition for the fictitious gas, as far as the perturbation solution is 
concerned. 

Since the shock relations are transcribed as (2.25)-(2.28), the fictitious gas 
will have the same weak-shock jumps as the magnetogasdynamic flow if the 
coefficients of the perturbation expansion of the equations of state are made to 
coincide by (3.8). Thus-weak shock solutions also transcribe, but it may be 
anticipated that, even near Alfvenic upstream flow no switch-on solutions will 
be obtained by transcription because no such gasdynamic solutions exist. 

In  summary, for an axisymmetric magnetogasdynamic flow in cylindrical 
co-ordinates (x ,  r ,  $), the velocity is 

q(x ,  r )  = u& + wer, (3.9) 

where Gi is i th unit vector. Dividing through by a ,  and expanding gives 

u/a, = M,fu,+u,+ ..., (3.10) 

wla, = wl+ v2+ ... . (3.11) 

The formulae from which the magnetogasdynamic velocity components are 
evaluated are now obtained by inverting the transformation equations (2.12)- 
(2.15), (2.31) and (2.32), and eliminating density by the Bernoulli equation 
(2.10) for a perfect gas. 

111 = Nlbo'$/&, 
(3.12) 

(3.13) 

(3.14) 

(3.15) 

(3.16) 

where w: is the same order as u1 on the body surface, according to the kinematic 

vl/(Mm + ul) = B dR,/dx, boundary condition 

zi2/u2 = edR,/dx, 

p1 = -M,ul-l 2v13 2 

R, = Q( 2 - 7) (w: + 4M, ~ ~ ~ 2 1 )  - +[ 1 - (2 - 7) M:] ~ 2 , )  
h ~ z = x : 2 - 1  =h2, = (A2,-1)(1M2,-l)/(A2,+M2,-1) 

= cot2 (characteristic angle), 
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with E = R,,,/L < 1 as the fineness ratio of the body given by 

rsuriace = ERJx), R, = O(l),  for 0 < z < L. (3.17) 

Precision of the perturbation solution is significantly improved if the exact 
boundary conditions are satisfied at each order (Van Dyke 1957; Bertram 
1969); apparently this is the result of ordering velocity components on the body 
surface. Note finally that the transcription equations (3.12)-(3.14) reduce to the 
gasdynamic solution in the limit A,  + 00. 

I n  the Alfvknic limit, A,+l ,  the fictitious gas becomes a KBrm&n- 
Chaplygin-Tsien gas and thus cannot reach the singular sonic-flow limit. Thus 
the gasdynamic solution v*, u* is finite, and repeated use of the relations A2, = 0 
and h2,/(A2, - 1) = 1 - l/M2, in the limit shows that the speed perturbations 

q1 = UJM, + v: /~MZ, ,  q2 = u,/M, + ui/2M2, + v1 vz/M2, 
vanish in the limit A,-+ 1. So density, pressure and magnetic induction 
perturbations also vanish and only the direction of flow is perturbed by the 
body. This resembles the behaviour of the exact solution for the semi-infinite 
cone (Bertram & Lynn 1972), but occurs in the perturbation solution only a t  
A,  = 1,  when the shock should be a switch-off shock, rather than a t  a slightly 
greater value of A,, when the nose shock is a switch-on shock. This is purely 
a property of the transcription solution for the closed axisymmetric body, since 
a qualitative construction of the exact solution (Bertram 1969) includes expan- 
sions and varying flow on the body surface even when the nose shock is assumed 
to be a finite switch-on shock. 

4. Transcription of the cone-flow solution 
As a test case of the transcription process Van Dyke's (1952) solution for the 

gasdynamic supersonic flow over a semi-infinite cone of semi-apex angle 8, is 
transcribed. The first-order solution 

(4.1) 1 v;/q: = h:Cl(l/p- l)t, 
u:lq: = - C, sech-l 6 + C,, 

where 5 = A: r /x  = A: tan 8, 8 being the spherical co-ordinate polar angle, may 
be substituted into (3.12)-(3.14), giving 

%(t) = M,LC,(1/52- 1 ) t  

To first order, the shock conditions require that the perturbations vanish on the 
backward-facing characteristic 6 = 1, so C, = 0. The exact boundary condition, 
equation (3.15), becomes 

vl(S)/[Mm + zc1(6)] = tan OC = S/A,, 
where S = A m  tan 8, = tsurface, 

where F1(S) = S2/[(1 - S 2 ) t  + 6, sech-l S / ( M z  - l)] is the gasdynamic Cl. 
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The second-order gasdynamic solution 

474: = GC,(1/C2- 1):+h:F,(f;),\ 
u:/& = - C, sech-lE + C4 + F2(f;), I (4.4) 

(N* + 1) where F2(f;) = CZ, Mz2 sech-I g)2 - ( N *  - 1) - - sech-If; 
1 - f ; z  

yields the magnetogasdynamic solution, with constants C4 = 0 froin the 
vanishing of perturbations on the characteristic, and 

6 v1(6) (1 - 62): Am M ,  
F2(6) + (Mz - 1) (A: - 1) 

(4.5) 

from the exact second-order boundary condition, equation (3.16). Satisfying 
the shock relations to  second order fixes the position of the shock wave at  

tango,+ ... 1 3M:4N*2 
t a n p  = -+- 

A m  2 A m  

by transcription of the result of Van Dyke (1952), obtained from a Lighthill 
stretching technique. 

Bausset (1963) worked out the first-order solution, equation (4.2), and the 
shock-angle correction, equation (4.6), in a different form. His solution did not 
contain the v: term in ul, since he ordered terms arbitrarily in powers of a 
general perturbation parameter. This led also to the appearance of the para- 
meter in the perturbation terms implicitly, as well as explicitly in the 
coefficients. Finally, his application to sub-Alfvbnic flows is incorrect because 
of the obtuse shock angle and the singularity a t  the backward characteristic 
off the nose, both of which were overlooked. 

The precision of the solution, (4.2)-(4.6), is apparent in figures 1-3, where 
the results of numerical integration of the exact equations of motion (Bertram 
& Lynn 1972) are compared with the perturbation solution in the supersonic 
super-Alfvknic case. Figures 1 (a )  and ( b )  compare surface velocity perturbation 
predictions, Q(S), for a semi-apex angle of 5" a t  fixed M, and A,,  respectively. 



Cowley-Imai analogy in magnetogasdynamics 41 

The second-order approximation is indistinguishable from the numerical 
('exact ') results over the entire range, while the first-order approximation 
improves in fit as the field strength increases. For the 5" cone with A ,  = M,, 
the divergence of the second-order approximation to the total pressure coeffi- 
cient, cp = ( ~ ~ + B ~ / 2 ~ - l ? ~ - B 2 , / 2 ~ ) / ( B p , p ~ ) ,  is shown in figure 2. Again the 
strong-field fit is best, despite the inability of the perturbation solution to 
describe the switch-on shock. 

I 1 I I 

1 5 10 15 20 
0 

1 5 10 15 20 

A m  M m  

FIGURE 1. Perturbation solution, 5" cone. -, exact; ------, first-order; y = 5 .  
(a) M ,  = 2.0; ( b )  A ,  = 2.0. 

1 5 10 15 20 

FIGURE 2. Perturbation solution, 5' cone. -, exact ; --- , second-order ; 
M m ,  A m  

y = 4; A ,  = M m .  

I n  figure 3 the solution for surface velocity perturbations for all possible 
cone angles is plotted for strong- and weak-shock solutions when the fixed 
upstream state is (Arn, M,, y )  = (2-0,2-0, g). The first-order solution provides 
good approximations of surface velocity up to cone angles of 15", while the 
second-order solution fits well until the perturbation parameter S becomes 
unity, reproducing most of the weak-shock branch. However, unlike the first- 
order solution, the second-order solution breaks down in the flow while still giving 
good predictions a t  the surface. The breakdown begins when the prediction of 
velocity behind the shock becomes greater than the upstream velocity, implying 
that the shock is a rarefaction; as 6 increases beyond this point more and more 
of the flow field becomes a rarefaction. 

I n  summary, the perturbation solutions obtained from the Cowley-Imai 
analogy provide excellent approximations t o  the flow over a cone. The major 
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limitations of the method are that it can only provide weak-shock solutions and 
that it cannot describe the switch-on shock solutions, even though the precision 
is greatest away from the shock in the strong-field case. 

0 10 20 30 40 50 60 

e 
FIGURE 3. Perturbation solutions, large cones. -, exact; ---, first-order ; 

-.- , second-order y = $; A ,  = M ,  = 2-0. 
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